Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Oncotarget ; 9(18): 14160-14174, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581835

RESUMO

Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a >50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.

3.
Oncotarget, v. 9, n. 18, p. 14160-14174, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2519

RESUMO

Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a > 50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.

4.
Oncotarget ; 9(18): p. 14160-14174, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15289

RESUMO

Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a > 50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.

5.
An Acad Bras Cienc ; 89(3): 1699-1705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28876395

RESUMO

INTRODUCTION/AIM: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. METHODS: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL) standard chow group; high fat diet low carbohydrates group (HFD) and HFD plus daily oral 20U insulin gavage (HFD+INS). Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. RESULTS: Rat oral insulin treatment decreased body weight gain (p<0,001), fasting glucose and triglycerides serum levels (p<0,05) an increased intestinal weight of distal ileum (P<0,05). Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05) in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. CONCLUSIONS: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.


Assuntos
Glicemia/análise , Dieta Hiperlipídica , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Lipídeos/sangue , Redução de Peso/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Radioimunoensaio , Ratos , Ratos Wistar
6.
An. acad. bras. ciênc ; 89(3): 1699-1705, July-Sept. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-886771

RESUMO

ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL) standard chow group; high fat diet low carbohydrates group (HFD) and HFD plus daily oral 20U insulin gavage (HFD+INS). Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001), fasting glucose and triglycerides serum levels (p<0,05) an increased intestinal weight of distal ileum (P<0,05). Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05) in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.


Assuntos
Animais , Masculino , Ratos , Glicemia/análise , Redução de Peso/efeitos dos fármacos , Dieta Hiperlipídica , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Lipídeos/sangue , Glicemia/efeitos dos fármacos , Radioimunoensaio , Ratos Wistar , Hipoglicemiantes/farmacologia , Insulina/farmacologia
7.
Arch Oral Biol ; 58(9): 1187-98, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23583017

RESUMO

OBJECTIVES: This study aimed to evaluate the systemic inflammatory response and cardiovascular changes induced by experimental periodontitis in rats. DESIGN: Experimental periodontitis was induced by placing a cotton ligature around the cervix of both sides of mandibular first molars and maxillary second molars in each male rat. Sham-operated rats had the ligature removed immediately after the procedure. Seven, 14 or 28 days after procedure, the effects of acetylcholine, sodium nitroprusside and phenylephrine were evaluated on blood pressure, aortic rings and isolated and perfused mesenteric bed. The blood was obtained for plasma Interleukin-6 (IL-6), C-reactive protein (CRP) and lipid evaluation. The mesenteric vessels were obtained to evaluate superoxide production and nitric oxide synthase 3 (NOS-3) expression. RESULTS: Ligature induced periodontitis reduced endothelium-dependent vasodilatation, a hallmark of endothelial dysfunction. This effect was associated with an increase in systemic inflammatory markers (IL-6 and CRP), worsens on lipid profile, increased vascular superoxide production and reduced NOS-3 expression. It is interesting to note that many of these effects were transitory. CONCLUSION: Periodontitis induced a transient systemic and vascular inflammation which leads to endothelial dysfunction, an initial step for cardiovascular diseases. Moreover, the animal model of periodontitis used here may represent a valuable tool for studying the relationship between periodontitis and endothelial dysfunction.


Assuntos
Endotélio/efeitos dos fármacos , Inflamação/complicações , Artérias Mesentéricas/efeitos dos fármacos , Periodontite/etiologia , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Perda do Osso Alveolar/fisiopatologia , Análise de Variância , Animais , Biomarcadores/análise , Proteína C-Reativa/análise , Endotélio/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-6/sangue , Masculino , Artérias Mesentéricas/fisiopatologia , Microscopia de Fluorescência , Óxido Nítrico Sintase/análise , Nitroprussiato/farmacologia , Periodontite/metabolismo , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Superóxidos/análise
8.
Lipids Health Dis ; 9: 142, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21162733

RESUMO

BACKGROUND: Statins induces cell cycle arrest, apoptosis, reduction of angiogenic factors, inhibition of the endothelial growth factor, impairing tissue adhesion and attenuation of the resistance mechanisms. The aim of this study was evaluate the anti-tumoral activity of simvastatin in a B16F10 melanoma-mouse model. METHODS: Melanoma cells were treated with different concentrations of simvastatin and assessed by viability methods. Melanoma cells (5 × 10(4)) were implanted in two month old C57Bl6/J mice. Around 7 days after cells injection, the oral treatments were started with simvastatin (5 mg/kg/day, p.o.). Tumor size, hematological and biochemical analyses were evaluated. RESULTS: Simvastatin at a concentration of 0.8 µM, 1.2 µM and 1.6 µM had toxic effect. Concentration of 1.6 µM induced a massive death in the first 24 h of incubation. Simvastatin at 0.8 µM induces early cell cycle arrest in G0/G1, followed by increase of hypodiploidy. Tumor size were evaluated and the difference of treated group and control, after ten days, demonstrates that simvastatin inhibited the tumor expansion in 68%. CONCLUSION: Simvastatin at 1.6 µM, presented cytototoxicity after 72 h of treatment, with an intense death. In vivo, simvastatin being potentially useful as an antiproliferative drug, with an impairment of growth after ten days.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Sinvastatina/uso terapêutico , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citometria de Fluxo , Fígado/efeitos dos fármacos , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos
9.
Biol Res ; 43(4): 439-44, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21526270

RESUMO

7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorporate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.


Assuntos
Cetocolesteróis/química , Lipoproteínas LDL/química , Nanopartículas , Animais , Cromatografia em Gel , Emulsões , Cetocolesteróis/farmacocinética , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Nanopartículas/química
10.
Photomed Laser Surg ; 28 Suppl 1: S151-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19764894

RESUMO

BACKGROUND AND OBJECTIVE: Impaired cell metabolism and increased cell death in fibroblast cells are physiological features of chronic tendinopathy. Although several studies have shown that low-level laser therapy (LLLT) at certain parameters has a biostimulatory effect on fibroblast cells, it remains uncertain if LLLT effects depend on the physiological state. STUDY DESIGN/MATERIAL AND METHODS: High-metabolic immortal cell culture and primary human keloid fibroblast cell culture were used in this study. Trypan blue exclusion and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test were used to determine cell viability and proliferation. Propidium iodide stain was used for cell-cycle analysis by flow cytometry. Laser irradiation was performed daily on three consecutive days with a GaAlAs 660-nm laser (mean output: 50 mW, spot size 2 mm(2), power density =2.5 W/cm(2)) and a typical LLLT dose and a high LLLT dose (irradiation times: 60 or 420 s; fluences:150 or 1050 J/cm(2); energy delivered: 3 or 21 J). RESULTS: Primary fibroblast cell culture from human keloids irradiated with 3 J showed significant proliferation by the trypan blue exclusion test (p < 0.05), whereas the 3T3 cell culture showed no difference using this method. Propidium iodide staining flow cytometry data showed a significant decrease in the percentage of cells being in proliferative phases of the cell cycle (S/g(2)/M) when irradiated with 21 J in both cell types (hypodiploid cells increased). CONCLUSIONS: Our data support the hypothesis that the physiological state of the cells affects the LLLT results, and that high-metabolic rate and short- cell-cycle 3T3 cells are not responsive to LLLT. In conclusion, LLLT with a dose of 3 J reduced cell death significantly, but did not stimulate cell cycle. A LLLT dose of 21 J had negative effects on the cells, as it increased cell death and inhibited cell proliferation.


Assuntos
Proliferação de Células/efeitos da radiação , Fibroblastos/fisiologia , Terapia com Luz de Baixa Intensidade , Células 3T3 , Animais , Morte Celular/efeitos da radiação , Sobrevivência Celular , Relação Dose-Resposta à Radiação , Citometria de Fluxo , Humanos , Queloide/patologia , Camundongos
11.
Biol. Res ; 43(4): 439-444, 2010. ilus, tab
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: lil-582858

RESUMO

7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorpórate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.


Assuntos
Animais , Camundongos , Cetocolesteróis/química , Lipoproteínas LDL/química , Nanopartículas , Cromatografia em Gel , Emulsões , Cetocolesteróis/farmacocinética , Lipoproteínas LDL/metabolismo , Modelos Biológicos , Nanopartículas/química
12.
Photomedicine and laser surgery ; 28(1): 151-156, 2010.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1065493

RESUMO

Background and Objective: Impaired cell metabolism and increased cell death in fibroblast cells are physiologicalfeatures of chronic tendinopathy. Although several studies have shown that low-level laser therapy (LLLT) atcertain parameters has a biostimulatory effect on fibroblast cells, it remains uncertain if LLLT effects depend on thephysiological state. Study Design/Material and Methods: High-metabolic immortal cell culture and primaryhuman keloid fibroblast cell culture were used in this study. Trypan blue exclusion and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test were used to determine cell viability and proliferation. Propidiumiodide stain was used for cell-cycle analysis by flow cytometry. Laser irradiation was performed daily onthree consecutive days with a GaAlAs 660-nm laser (mean output: 50mW, spot size 2mm2, power density»2.5W=cm2) and a typical LLLT dose and a high LLLT dose (irradiation times: 60 or 420 s; fluences:150 or1050 J=cm2; energy delivered: 3 or 21 J). Results: Primary fibroblast cell culture from human keloids irradiated with3 J showed significant proliferation by the trypan blue exclusion test ( p<0.05), whereas the 3T3 cell cultureshowed no difference using this method. Propidium iodide staining flow cytometry data showed a significantdecrease in the percentage of cells being in proliferative phases of the cell cycle (S=g2=M) when irradiated with 21 Jin both cell types (hypodiploid cells increased). Conclusions: Our data support the hypothesis that the physiologicalstate of the cells affects the LLLT results, and that high-metabolic rate and short- cell-cycle 3T3 cells are notresponsive to LLLT. In conclusion, LLLT with a dose of 3 J reduced cell death significantly, but did not stimulatecell cycle. A LLLT dose of 21 J had negative effects on the cells, as it increased cell death and inhibited cellproliferation.


Assuntos
Células/metabolismo , Fibroblastos
13.
BMC Cancer ; 9: 404, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19930543

RESUMO

BACKGROUND: It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. METHODS: We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm(2), irradiance 2.5 W/cm(2) and irradiation times of 60s (dose 150 J/cm(2)) and 420s (dose 1050 J/cm(2)) respectively. RESULTS: There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 +/- 1.40% and 4.26 +/- 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm(2) dose group were not significantly different from controls. For the 1050 J/cm(2) dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. CONCLUSION: LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm(2)) and high dose (1050 J/cm(2)) significantly increases melanoma tumor growth in vivo.


Assuntos
Proliferação de Células/efeitos da radiação , Terapia com Luz de Baixa Intensidade/efeitos adversos , Melanoma Experimental/radioterapia , Animais , Apoptose/efeitos da radiação , Lasers , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...